








Hardware (pronunciación AFI: /ˈhɑːdˌwɛə/ ó /ˈhɑɹdˌwɛɚ/) corresponde a todas las partes físicas y tangibles[1] de una computadora: sus componentes eléctricos, electrónicos, electromecánicos y mecánicos;[2] sus cables, gabinetes o cajas, periféricos de todo tipo y cualquier otro elemento físico involucrado; contrariamente al soporte lógico e intangible que es llamado software. El término es una voz inglesa[3] y es definido por el DRAE como «equipo (conjunto de aparatos de una computadora)».[4] Sin embargo, el término, aunque es lo más común, no necesariamente se aplica a una computadora tal como se la conoce, así por ejemplo, un robot también posee hardware (y software).[5] [6]
La historia del hardware del computador se puede clasificar en tres generaciones, cada una caracterizada por un cambio tecnológico de importancia. Este hardware se puede clasificar en: básico, el estrictamente necesario para el funcionamiento normal del equipo, y el complementario, el que realiza funciones específicas.
Un sistema informático se compone de una unidad central de procesamiento (CPU), encargada de procesar los datos, uno o varios periféricos de entrada, los que permiten el ingreso de la información y uno o varios periféricos de salida, los que posibilitan dar salida (normalmente en forma visual o auditiva) a los datos.
Hardware típico de una computadora personal.
1. Monitor
2. Placa base
3. CPU
4. Memoria RAM
5. Tarjeta de expansión
6. Fuente de alimentación
7. Disco óptico
8. Disco duro
9. Teclado
10. Mouse
QUE ES UN DISPOSITIVO DE ENTRADA
DISPOSITIVOS DE ENTRADA.
TECLADO
Un teclado alfanumérico se utiliza principalmente como un dispositivo para introducir texto. El teclado es un dispositivo eficaz para introducir datos no gráficos como rótulos de imágenes asociados con un despliegue de gráficas. Los teclados también pueden ofrecerse con características que facilitan la entrada de coordenadas de la pantalla, selecciones de menús o funciones de gráficas.
Las teclas de control del cursor y las teclas de funciones son características comunes que se encuentran en teclados de uso general. Las teclas de funciones permiten a los usuarios introducir operaciones de uso común con un solo golpe de la llave y las teclas de control del cursor seleccionan posiciones coordenadas posicionando el cursor de la pantalla en un monitor de video. Además, a menudo se incluye un teclado numérico en el teclado de la computadora para agilizar la entrada de datos numéricos.
MOUSE
Es un dispositivo electrónico que nos permite dar instrucciones a nuestra computadora a través de un cursor que aparece en la pantalla y haciendo clic para que se lleve a cabo una acción determinada. A medida que el mouse rueda sobre el escritorio, en correspondencia, el cursor (puntero) en la pantalla hace lo mismo. Tal procedimiento permitirá controlar, apuntar, sostener y manipular varios objetos gráficos(y de texto) en un programa.
Al igual que el teclado, el Mouse es el elemento periférico que más se utiliza en una PC(aunque en dado caso, se puede prescindir de él). Los “ratones” han sido los elementos que más variaciones han sufrido en su diseño. Es difícil ver dos modelos y diseños de ratones iguales, incluso siendo del mismo fabricante.
Es una unidad de ingreso de información. Funciona acoplado a la pantalla del operador permitiendo dar movilidad al cursor (señal apuntadora en pantalla).
Tipos de Mouse: Existen diferentes tecnologías con las que funciona el Mouse:
*
Mecánica
*
Óptica
*
Optomecánica
De estas tecnologías, la última es la más utilizada en los “ratones” que se fabrican ahora. La primera era poco precisa y estaba basada en contactos físicos eléctricos a modo de escobillas que en poco tiempo comenzaban a fallar. Los ópticos son muy precisos, pero demasiado caros y fallan a menudo.
Existen “ratones” especiales, como por ejemplo los trackballs, que son dispositivos en los cuales se mueve una bola con la mano, en lugar de estar abajo y arrastrarla por una superficie. Son los dispositivos más utilizados en las portátiles,
SCANNERS
Es una unidad de ingreso de información. Permite la introducción de imágenes gráficas al computador mediante un sistema de matrices de puntos, como resultado de un barrido óptico del documento. La información se almacena en archivos en forma de mapas de bits (bit maps), o en otros formatos más eficientes como JPEG o GIF.
Existen scanners que codifican la información gráfica en blanco y negro, y a colores. Así mismo existen scanners de plataforma plana fija(cama plana) con apariencia muy similar a una fotocopiadora, y scanners de barrido manual.
Los scanners de cama plana pueden verificar una página entera a la vez, mientras que los portátiles solo pueden revisar franjas de alrededor de 4 pulgadas. Reconocen imágenes, textos y códigos de barras, convirtiéndolos en código digital (ASCII o EBCDIC).
los exploradores gráficos convierten una imagen impresa en una de video (gráficos por trama) sin reconocer el contenido real del texto o las figuras.
DISCOS DUROS:
Los discos duros son dispositivos de almacenamiento secundario con una superficie circular y plana, que se utilizan para registrar información masiva, programas y datos en computadores personales o microcomputadoras.
El disco duro es conocido también como Hard Disk, el disco fijo como Fixed Disk y la unidad de disco duro como Hard Drive.
Estos discos consisten en un soporte rígido sobre el que se deposita una pequeña película de material magnetizable (óxidos o metales), que permite la grabación de los datos por magnetización.
Los avances en las tecnologías de película magnética delgada, permiten que los datos sean grabados en dominios cada vez más pequeños y que estos dispositivos sufran menos daños durante el proceso de lectura-escritura, gracias a que la dureza de sus superficies de grabación es dos veces superior a la de las tradicionales superficies de óxido de hierro. Todas estas mejoras están facilitando disponer de discos con mayores densidades de almacenamiento y con unos tiempos de acceso sensiblemente inferiores.
Los soportes de estos dispositivos giran a gran velocidad, típicamente 3.000 rpm. No obstante, y al contrario de lo que sucede con los disquetes, las cabezas de lectura-escritura no tocan el soporte sino que se desplazan a una distancia del orden de 10-4 mm. de la superficie del disco, gracias al aire que desplaza el disco al girar a gran velocidad, evitando así su desgaste. Para evitar el choque de la cabeza con la superficie del disco en los cortes de alimentación, se dispone de un sistema que separa las cabezas antes de que el disco pierda velocidad.
Los discos duros magnéticos representan el medio de almacenamiento más extendido entre ordenadores personales, estaciones de trabajo, servidores, miniordenadores y grandes ordenadores centrales, debido a sus excelentes características de capacidad, fiabilidad y velocidad de acceso a los datos. En definitiva, los discos duros son el dispositivo de almacenamiento masivo que ofrece la máxima relación capacidad de almacenamiento/coste, con tiempos de acceso muy rápidos.
Junto con las cabezas de lectura-escritura va asociada toda una circuitería electrónica que se encarga de gestionar las tareas de almacenamiento. Esta circuitería es la controladora, cuya función es el proceso del flujo de datos que pasan a través de ella con objeto de darle formato para su transmisión y registro, pero sin alterar su significado.
Entre los principales estándares que definen estos dispositivos de almacenamiento figuran el SCSI (Small Computer Systems Interfase), el ESDI (Enhanced Small Disk Interfase), el IDE (Integrated Drive Electronics) y el EIDE (Enhanced Integrated Drive Electronics).
Los discos presentan las siguientes características:
#
Las diferencias conceptuales entre las unidades de discos duros y las de discos "flexibles" no son tan notorias.
#
Los discos duros son siempre fijos, es decir, no se pueden ni insertar ni extraer y se instalan en el interior de la microcomputadora.
#
Se pueden encontrar sin embargo, discos removibles o disk pack, cuyas características resultan de la combinación de las presentadas por los discos duros y los discos flexibles.
MICRÓFONOS
Los micrófonos son los transductores* encargados de transformar energía acústica en energía eléctrica, permitiendo, por lo tanto el registro, almacenamiento, transmisión y procesamiento electrónico de las señales de audio. Son dispositivos duales de los altoparlantes, constituyendo ambos transductores los elementos mas significativos en cuanto a las características sonoras que sobreimponen a las señales de audio.
No existe el micrófono ideal, debido a la sencilla razón que no se tiene un solo ambiente acústico o un solo tipo de música. Es por ello que, el ingeniero de sonido tiene a su disposición una amplia gama de micrófonos, cada uno de los cuales sirve para ciertos casos particulares.
Existen los llamados micrófonos de diadema que son aquellos, que, como su nombre lo indica, se adhieren a la cabeza como una diadema cualquiera, lo que permite al usuario mayor comodidad ya no necesita sostenerlo con las manos, lo que le permite realizar otras actividades.
LÁPIZ ÓPTICO
Es una unidad de ingreso de información que funciona acoplada a una pantalla fotosensible.
Es un dispositivo exteriormente semejante a un lápiz, con un mecanismo de resorte en la punta o en un botón lateral, mediante el cual se puede seleccionar información visualizada en la pantalla. Cuando se dispone de información desplegada, con el lápiz óptico se puede escoger una opción entre las diferentes alternativas, presionándolo sobre la ventana respectiva o presionando el botón lateral, permitiendo de ese modo que se proyecte un rayo láser desde el lápiz hacia la pantalla fotosensible.
Es un dispositivo señalador que permite sostener sobre la pantalla un lápiz que está conectado al ordenador o computadora y con el que es posible seleccionar elementos u opciones (el equivalente a un clic de mouse o ratón), bien presionando un botón en un lateral del lápiz óptico o presionando éste contra la superficie de la pantalla. El lápiz contiene sensores luminosos y envía una señal a la computadora cada vez que registra una luz, por ejemplo al tocar la pantalla cuando los píxeles no negros que se encuentran bajo la punta del lápiz son refrescados por el haz de electrones de la pantalla. La pantalla de la computadora no se ilumina en su totalidad al mismo tiempo, sino que el haz de electrones que ilumina los píxeles los recorre línea por línea, todas en un espacio de 1/50 de segundo. Detectando el momento en que el haz de electrones pasa bajo la punta del lápiz óptico, el ordenador puede determinar la posición del lápiz en la pantalla. El lápiz óptico no requiere una pantalla ni un recubrimiento especiales como puede ser el caso de una pantalla táctil, pero tiene la desventaja de que sostener el lápiz contra la pantalla durante periodos largos de tiempo llega a cansar al usuario.
JOYSTICK:
Palanca que se mueve apoyada en una base. El mover tal palanca hace que el cursor se desplace sobre la pantalla, y al presionar alguno de los botones que en ella se encuentran, se efectúa cierta acción, de acuerdo con el programa.
Se usa para jugar en la computadora.
QUE ES UN DISPOSITIVO DE SALIDA
los dispositivos de salida , los cuales permiten representar los resultados (salida) del proceso de datos. El dispositivo de salida típico es la pantalla o monitor . Otros dispositivos de salida son: impresoras (imprimen resultados en papel), trazadores gráficos ( plotters ), bocinas , entre otros y que a continuación se mencionan...
MONITOR
Dispositivo de salida más común de las computadoras con el que los usuarios ven la información en pantalla. Recibe también los nombres de CRT, pantalla o terminal. En computación se distingue entre el “monitor”, que incluye todo el aparato que produce las imágenes, y la “pantalla”, que es sólo el área donde vemos las imágenes. Así, el dispositivo de salida es todo el monitor, no solamente la pantalla.
IMPRESORA
Es el periférico que el ordenador utiliza para presentar información impresa en papel. Las primeras impresoras nacieron muchos años antes que el PC e incluso antes que los monitores, siendo durante años el método más usual para presentar los resultados de los cálculos en aquellos primitivos ordenadores, todo un avance respecto a las tarjetas y cintas perforadas que se usaban hasta entonces.
PARLANTES
Cada vez las usa más la computadora para el manejo de sonidos, para la cual se utiliza como salida algún tipo de bocinas. Algunas bocinas son de mesas, similares a la de cualquier aparato de sonidos y otras son portátiles (audífonos). Existen modelos muy variados, de acuerdo a su diseño y la capacidad en watts que poseen.
DATA SHOW O CAÑONES:
Es una unidad de salida de información. Es básicamente una pantalla plana de cristal líquido, transparente e independiente. Acoplado a un retroproyector permite la proyección amplificada de la información existente en la pantalla del operador.
CÁMARAS:
Cámara digital:
Es una cámara equipada con un captador electrónico fotosensible. Las imágenes digitales son almacenadas directamente en la memoria de la cámara y pueden ser utilizadas inmediatamente después en un ordenador.
Cámara para Internet:
Son aquellas que podemos observar en la parte superior del monitor de una computadora. Su utilidad no es muy grande, pero permite al usuario captar imágenes y luego almacenarlas en la memoria de la computadora. Así mismo, se usa para intercambio de imágenes por Internet ya que , si uno lo desea, puede iniciar una charla con imágenes o enviar imágenes en la red.
QUE ES UN DISPOSITIVO DE PROCESAMIENTO
No hace mucho tiempo cuando alguien preguntaba ¿ quien fabrica los procesadores para las computadoras? sin lugar a dudas la respuesta era INTEL (Integrated Electronics). Los procesadores producidos por INTEL desde 1968 representan cinco generaciones de procesadores dentro de la historia de las computadoras compatibles con IBM.
COMPAÑIAS FABRICANTES DE PROCESADORES
En la actualidad la respuesta a la anterior pregunta ha cambiado, porque INTEL ya tiene competencia y como otros importantes fabricantes de procesadores en la actualidad se encuentran AMD (Advanced Micro Devices ), Cyrix, IBM y IDT (winchip). Para entender completamente la capacidad y funcionamiento de un sistema se debe conocer por lo menos el tipo de procesador que tiene dicho equipo y entre los más conocidos figuran los siguientes:
¿QUE ES EL PROCESADOR?
El chip más importante de cualquier tarjeta
madre es sin duda el procesador, también llamado CPU (Central Processing Unit ) sin él, la computadora no pudiera funcionar pues es el elemento central en el procesamiento de datos.
El procesador verifica cada paso en el proceso de datos, está unido directa o indirectamente a todos los demás componentes de la tarjeta madre así, la mayoría de estos componentes reciben órdenes y son activados directamente por el procesador, también supervisa todos y cada uno de los componentes de hardware de la computadora.
Cualquier computadora típica tiene varios buses y cualquier procesador tiene dos importantes. Uno para llevar datos y otro para direccionar información en la memoria, el procesador en si esta compuesto por: bus de datos, registros internos , bus de direcciones y velocidad, los cuales le permiten ejecutar sus tareas
COMPONENTES :
BUS DE DATOS DEL PROCESADOR
Una de las maneras más comunes para describir un procesador es por el tamaño del bus de datos y de direcciones. Un bus es simplemente una serie de conexiones que llevan señales comunes.
Cualquier medio de transmisión que tiene más de una guía o conexión puede ser llamado bus. El más conocido es el datos: que es el conjunto de pistas o pines usado para enviar y recibir datos.
REGISTROS INTERNOS
Un registro es un dispositivo capaz de almacenar información, la cual se necesita en el procesamiento de la instrucción en curso de interpretación. Desde el punto de vista conceptual, los registros son los mismo que la memoria principal; la diferencia estriba en que los registros están ubicados en el procesador mismo y, por lo tanto, se pueden acceder a ellos en lectura y escritura más rápidamente, que a la memoria principal, la cual esta fuera del chip.
VELOCIDAD DEL PROCESADOR
La velocidad de reloj de una computadora es medida como frecuencia, expresada en un número de ciclos por segundo. Un oscilador de cristal controla la velocidad de reloj; usando una pequeñísima parte de un cuarzo en una pequeña y delgada caparazón, un voltaje es aplicado al cuarzo y este empieza a vibrar u oscilar a una velocidad armónica o constante originada por la forma y tamaño del cristal. Las oscilaciones salen del cristal en forma de una corriente alterna a la velocidad del cristal, esta corriente alterna es la señal de reloj. Una computadora típica maneja millones de ciclos por segundo, esta velocidad es medida en Megahertz.
VELOCIDADES POSIBLES EN LOS 486
TIPOS DE PROCESADORES:
INTEL 486 DX:
El primer procesador 486 DX INTEL apareció en 1989 y las primeras computadoras usando este chip estuvieron disponibles durante 1990. Los primeros chips tenían una velocidad máxima de 25 Mhz, versiones posteriores estuvieron disponibles en velocidades de 33 y 50 Mhz. Dos características principales diferencian a los 486 estas son: Integración y escalabilidad.
INTEL OVERDRIVE o 486 DX/2:
A principios de 1992 INTEL anunció sus procesadores de doble velocidad DX2, u OVERDRIVE. Originalmente los DX2 u OVERDRIVE estaban disponibles solamente en versiones de 169 pines, lo que significaba que únicamente podían instalarse en tarjetas madre para 486 SX por su configuración de pines. A fines del 92, INTEL lanzó al mercado versiones OVERDRIVE para actualizar sistemas 486 DX.
Pentium 1a. Generación:
La 1a Generación de Pentium estuvo disponible en velocidades de 60 y 66 hz,.
Era un diseño de 273 pines y funcionaba a 5 volts, el procesador corría a la misma velocidad que el motherboard.
Este procesador con sus 3.1 millones de transistores y sus 5 volts necesarios para su operación, ocasionaron que el procesador a 66 Mhz tuviese un increíble consumo de 16 watts y generando una enorme cantidad de calor y problemas en los sistemas.
Pentium 2a. Generación:
La 2a. Generación de Pentium fue anunciada en el primer trimestre de 1994. Este procesador esta disponible en velocidades de 75, 90, 100, 120, 133, 166 Mhz. La construcción de este procesador se realizó con otra tecnología, para disminuir el consumo de energía, adicionalmente este procesador funcionaba con 3.3 v. Es un chip de 296 pines lo cual lo hace físicamente incompatible con los de la primera generación,
PENTIUM PRO:
El procesador P6 ( “ P ” de Pentium y 6 de 686 ), es el sucesor del 586, se le llamó P6 durante su desarrollo para finalmente renombrado como Pentium PRO.
PENTUIM MMX:
El Pentium MMX es una mejora del Classic al que se le ha incorporado un nuevo juego de instrucciones (57 para ser exactos) orientado a mejorar el rendimiento en aplicaciones multimedia, que necesitan mover gran cantidad de datos de tipo entero, como pueden ser videos o secuencias musicales o gráficos 2D. Al ser un juego de instrucciones nuevo, si el software que utilizamos no lo contempla, no nos sirve para nada, y ni Windows 95, ni Office 97 ni la mayor parte de aplicaciones actuales lo contemplan (Windows 98.
PENTUIM II:
Este es el último lanzamiento de Intel. Básicamente es un Pentium Pro al que se ha sacado la memoria caché de segundo nivel del chip y se ha colocado todo ello en un tarjeta de circuito impreso, conectada a la placa a través de un conector parecido al del estándar PCI, llamado Slot 1, y que se es utilizado por dos tipos de cartuchos, el S.E.C. y el S.E.P.P (el de los Celeron).
También se le ha incorporado el juego de instrucciones MMX.
CELERON:
Este procesador ha tenido una existencia bastante tormentosa debido a los continuos cambios de planes de Intel. Debemos distinguir entre dos empaquetados distintos. El primero es el S.E.P.P que es compatible con el Slot 1 y que viene a ser parecido al empaquetado típico de los Pentium II (el S.E.C.) pero sin la carcasa de plástico. El segundo y más moderno es el P.P.G.A. que es el mismo empaquetado que utilizan los Pentium y Pentium Pro, pero con distinto zócalo.
XENON:
Al Xeon le ocurre algo parecido al Celeron, ya que no dejan de ser variantes de un mismo procesador, o mejor dicho, de una misma CPU, ya que las variaciones principales están fuera de la CPU. En este caso, se ha buscado un procesador que sea un digno sucesor del Pentium Pro, el cual, y a pesar de los años que hace de su nacimiento, todavía no había sido igualado en muchas de sus características, ni por el mismo Pentium II.
PENTIUM III:
Debido a que las diferencias con el actual Pentium II son escasas, vamos a centrarnos en comparar ambos modelos. Se le han añadido las llamadas S.S.E. o Streaming SIMD Extensions, que son 70 nuevas instrucciones orientadas hacia tareas multimedia, especialmente en 3D.
ATHLON:
Parece que AMD sigue siempre el camino marcado por Intel, y en esta ocasión también se ha apuntado a cambiar los juegos de números por las palabras más o menos altisonantes. Si Intel denominó Pentium al i586, AMD ha hecho lo propio con el K7.
Procesadores de doble nucleo:
estos procesadores surgieron por las deficiencias y sobrecalentamiento que causaba tener un solo procesador, por lo cual apartir del año 2000 se empezaron a crear los procesadores de doble nucleo los cuales son dos procesadores que se encuentran en un mismo dispositivo estó hace que el trabajo que antes haria un solo procesador ahora lo dividan en dos y el trabajo o procesamiento de datos secuenciales sean mucho mas rapido y afecte menos el sobrecalentamiento de los procesadores.
QUE ES UN DISPOSITIVO DE ALMACENAMIENTO
os dispositivos o unidades de almacenamiento de datos son dispositivos que leen o escriben datos en medios o soportes de almacenamiento, y juntos conforman la memoria secundaria o almacenamiento secundario de la computadora.
Estos dispositivos realizan las operaciones de lectura y/o escritura de los medios o soportes donde se almacenan o guardan, lógica y físicamente, los archivos de un sistema informático.
Contenido
[ocultar]
* 1 Terminología
* 2 Dispositivos de almacenamiento de datos
o 2.1 Disco duro
o 2.2 Disquetera
o 2.3 Unidad de CD-ROM o "lectora"
o 2.4 Unidad de CD-RW (regrabadora) o "grabadora"
o 2.5 Unidad de DVD-ROM o "lectora de DVD"
o 2.6 Unidad de DVD-RW o "grabadora de DVD"
o 2.7 Unidad de disco magneto-óptico
o 2.8 Lector de tarjetas de memoria
o 2.9 Otros dispositivos de almacenamiento
Terminología [editar]
Los dispositivos que no se utilizan exclusivamente para grabación (por ejemplo manos, bocas, instrumentos musicales) y los dispositivos que son intermedios en almacenar/que recupera el proceso (por ejemplo ojos, oídos, cámaras fotográficas, exploradores, micrófonos, locutores, monitores, proyectores) generalmente no se consideran dispositivos de almacenamiento. Los dispositivos usados exclusivamente para grabación (por ejemplo impresoras), exclusivamente para lectura (por ejemplo lectores de códigos de barras), o los dispositivos que procesan solamente una forma de información (por ejemplo fonógrafos) pueden o no considerarse dispositivos de almacenamiento. En computación éstos se conocen como dispositivos de entrada-salida.
Un cerebro orgánico puede o no considerarse un dispositivo de almacenamiento de datos.
Toda la información es datos. Sin embargo, no todos los datos son información.
Dispositivos de almacenamiento de datos [editar]
Disco duro [editar]
Gabinete para disco duro con interfaz USB.
Artículo principal: Disco duro
Los discos duros tienen una gran capacidad de almacenamiento de información, pero al estar alojados normalmente dentro del armazón de la computadora (discos internos), no son extraíbles fácilmente. Para intercambiar información con otros equipos (si no están conectados en red) necesitamos utilizar unidades de disco, como los disquetes, los discos ópticos (CD, DVD), los discos magneto-ópticos, memorias USB, memorias flash, etc. El disco duro almacena casi toda la información que manejamos al trabajar con una computadora. En él se aloja, por ejemplo, el sistema operativo que permite arrancar la máquina, los programas, archivos de texto, imagen, video, etc. Dicha unidad puede ser interna (fija) o externa (portátil), dependiendo del lugar que ocupe en el gabinete o caja de computadora.
Un disco duro está formado por varios discos apilados sobre los que se mueve una pequeña cabeza magnética que graba y lee la información.
Este componente, al contrario que el micro o los módulos de memoria, no se pincha directamente en la placa, sino que se conecta a ella mediante un cable. También va conectado a la fuente de alimentación, pues, como cualquier otro componente, necesita energía para funcionar.
Además, una sola placa puede tener varios discos duros conectados.
Las características principales de un disco duro son:
* Capacidad: Se mide en gigabytes (GB). Es el espacio disponible para almacenar secuencias de 1 byte. La capacidad aumenta constantemente desde cientos de MB, decenas de GB, cientos de GB y hasta TB.
* Velocidad de giro: Se mide en revoluciones por minuto (RPM). Cuanto más rápido gire el disco, más rápido podrá acceder a la información la cabeza lectora. Los discos actuales giran desde las 4.200 a 15.000 RPM, dependiendo del tipo de ordenador al que estén destinadas.
* Capacidad de transmisión de datos: De poco servirá un disco duro de gran capacidad si transmite los datos lentamente. Los discos actuales pueden alcanzar transferencias de datos de más de 400 MB por segundo.
También existen discos duros externos que permiten almacenar grandes cantidades de información. Son muy útiles para intercambiar información entre dos equipos. Normalmente se conectan al PC mediante un conector USB.
Cuando el disco duro está leyendo, se enciende en la carcasa un LED (de color rojo, verde u otro). Esto es útil para saber, por ejemplo, si la máquina ha acabado de realizar una tarea o si aún está procesando datos.
Disquetera [editar]
Artículo principal: Disquetera
Representación gráfica de un disquete.
La unidad de 3,5 pulgadas permite intercambiar información utilizando disquetes magnéticos de 1,44 MB de capacidad. Aunque la capacidad de soporte es muy limitada si tenemos en cuenta las necesidades de las aplicaciones actuales se siguen utilizando para intercambiar archivos pequeños, pues pueden borrarse y reescribirse cuantas veces se desee de una manera muy cómoda, aunque la transferencia de información es bastante lenta si la comparamos con otros soportes, como el disco duro o un CD-ROM.
Para usar el disquete basta con introducirlo en la ranura de la disquetera. Para expulsarlo se pulsa el botón situado junto a la ranura, o bien se ejecuta alguna acción en el entorno gráfico con el que trabajamos (por ejemplo, se arrastra el símbolo del disquete hasta un icono representado por una papelera).
La unidad de disco se alimenta mediante cables a partir de la fuente de alimentación del sistema. Y también va conectada mediante un cable a la placa base. Un diodo LED se ilumina junto a la ranura cuando la unidad está leyendo el disco, como ocurre en el caso del disco duro.
En los disquetes solo se puede escribir cuando la pestaña esta cerrada.
Cabe destacar que el uso de este soporte en la actualidad es escaso o nulo, puesto que se ha vuelto obsoleto teniendo en cuenta los avances que en materia de tecnología se han producido.
Unidad de CD-ROM o "lectora" [editar]
Artículo principal: CD-ROM
Representación gráfica de un disco compacto.
La unidad de CD-ROM permite utilizar discos ópticos de una mayor capacidad que los disquetes de 3,5 pulgadas: hasta 700 MB. Ésta es su principal ventaja, pues los CD-ROM se han convertido en el estándar para distribuir sistemas operativos, aplicaciones, etc.
El uso de estas unidades está muy extendido, ya que también permiten leer los discos compactos de audio.
Para introducir un disco, en la mayoría de las unidades hay que pulsar un botón para que salga una especie de bandeja donde se deposita el CD-ROM. Pulsando nuevamente el botón, la bandeja se introduce.
En estas unidades, además, existe una toma para auriculares, y también pueder estar presentes los controles de navegación y de volumen típicos de los equipos de audio para saltar de una pista a otra, por ejemplo.
Una característica básica de las unidades de CD-ROM es la velocidad de lectura que normalmente se expresa como un número seguido de una «x» (40x, 52x,..). Este número indica la velocidad de lectura en múltiplos de 128 kB/s. Así, una unidad de 52x lee información de 128 kB/s × 52 = 6,656 kB/s, es decir, a 6,5 MB/s.
Unidad de CD-RW (regrabadora) o "grabadora" [editar]
Artículo principal: CD-RW
Las unidades de CD-ROM son de sólo lectura. Es decir, pueden leer la información en un disco, pero no pueden escribir datos en él.
Una regrabadora puede grabar y regrabar discos compactos. Las características básicas de estas unidades son la velocidad de lectura, de grabación y de regrabación. En los discos regrabables es normalmente menor que en los discos que sólo pueden ser grabados una vez. Las regrabadoras que trabajan a 8X, 16X, 20X, 24X, etc., permiten grabar los 650, 700 o más megabytes (hasta 900 MB) de un disco compacto en unos pocos minutos. Es habitual observar tres datos de velocidad, según la expresión ax bx cx (a:velocidad de lectura; b: velocidad de grabación; c: velocidad de regrabación).
Unidad de DVD-ROM o "lectora de DVD" [editar]
Artículo principal: DVD-ROM
Las unidades de DVD-ROM son aparentemente iguales que las de CD-ROM, pueden leer tanto discos DVD-ROM como CD-ROM. Se diferencian de las unidades lectoras de CD-ROM en que el soporte empleado tiene hasta 17 GB de capacidad, y en la velocidad de lectura de los datos. La velocidad se expresa con otro número de la «x»: 12x, 16x... Pero ahora la x hace referencia a 1,32 MB/s. Así: 16x = 21,12 MB/s.
Las conexiones de una unidad de DVD-ROM son similares a las de la unidad de CD-ROM: placa base, fuente de alimentación y tarjeta de sonido. La diferencia más destacable es que las unidades lectoras de discos DVD-ROM también pueden disponer de una salida de audio digital. Gracias a esta conexión es posible leer películas en formato DVD y escuchar seis canales de audio separados si disponemos de una buena tarjeta de sonido y un juego de altavoces apropiado (subwoofer más cinco satélites).
Unidad de DVD-RW o "grabadora de DVD" [editar]
Artículo principal: DVD-RW
Puede leer y grabar y regrabar imágenes, sonido y datos en discos de varios gigabytes de capacidad, de una capacidad de 650 MB a 9 GB.
Unidad de disco magneto-óptico [editar]
Artículo principal: Disco magneto-óptico
La unidad de discos magneto-ópticos permiten el proceso de lectura y escritura de dichos discos con tecnología híbrida de los disquetes y los discos ópticos, aunque en entornos domésticos fueron menos usadas que las disqueteras y las unidades de CD-ROM, pero tienen algunas ventajas en cuanto a los disquetes:
* Por una parte, admiten discos de gran capacidad: 230 MB, 640 Mb o 1,3 GB.
* Además, son discos reescribibles, por lo que es interesante emplearlos, por ejemplo, para realizar copias de seguridad.
Lector de tarjetas de memoria [editar]
Artículo principal: Memoria USB
El lector de tarjetas de memoria es un periférico que lee o escribe en soportes de memoria flash. Actualmente, los instalados en computadores (incluidos en una placa o mediante puerto USB), marcos digitales, lectores de DVD y otros dispositivos, suelen leer varios tipos de tarjetas.
Una tarjeta de memoria es un pequeño soporte de almacenamiento que utiliza memoria flash para guardar la información que puede requerir o no baterías (pilas), en los últimos modelos la batería no es requerida, la batería era utilizada por los primeros modelos. Estas memorias son resistentes a los rasguños externos y al polvo que han afectado a las formas previas de almacenamiento portátil, como los CD y los disquetes.
Otros dispositivos de almacenamiento [editar]
Otros dispositivos de almacenamiento son las memorias flash o los dispositivos de almacenamiento magnéticos de gran capacidad.
* Memoria flash: Es un tipo de memoria que se comercializa para el uso de aparatos portátiles, como cámaras digitales o agendas electrónicas. El aparato correspondiente o bien un lector de tarjetas, se conecta a la computadora a través del puerto USB o Firewire.
* Discos y cintas magnéticas de gran capacidad: Son unidades especiales que se utilizan para realizar copias de seguridad o respaldo en empresas y centros de investigación. Su capacidad de almacenamiento puede ser de cientos de gigabytes.
* Almacenamiento en línea: Hoy en día también debe hablarse de esta forma de almacenar información. Esta modalidad permite liberar espacio de los equipos de escritorio y trasladar los archivos a discos rígidos remotos provistos que garantizan normalmente la disponibilidad de la información. En este caso podemos hablar de dos tipos de almacenamiento en línea: un almacenamiento de corto plazo normalmente destinado a la transferencia de grandes archivos vía web; otro almacenamiento de largo plazo, destinado a conservar información que normalmente se daría en el disco rígido del ordenador personal.
QUE ES UN DISPOSITIVO MIXTO
Son aquellos dispositivos que pueden operar de ambas formas, como entrada o como salida. Típicamente, se puede mencionar como periféricos de Entrada/Salida a: discos rígidos, disquetes, unidades de cinta magnética, lecto-grabadoras de CD/DVD, discos ZIP, etc. También entran en este rango, con sutil diferencia, otras unidades, tales como: Memoria flash, tarjetas de red, módems, placas de captura/salida Si bien, puede ponerse al pendrive o Memoria flash o Memoria USB en la categoría de memorias, normalmente se las utiliza como dispositivos de almacenamiento masivo; y éstos son todos de categoría E/S.
Los dispositivos de almacenamiento masivo también son conocidos como "Memorias Auxiliares".
La Pantalla táctil (no el monitor clásico) es un dispositivo que se considera mixto, ya que además de mostrar información y datos (salida) puede actuar como un dispositivo de entrada de datos (reemplazando, por ejemplo, las funciones del mouse).
DISCO DURO
El disco duro es un dispositivo de almacenamiento no volátil, es decir conserva la información que le ha sido almacenada de forma correcta aun con la perdida de energía, emplea un sistema de grabación magnética digital, es donde en la mayoría de los casos se encuentra almacenado el sistema operativo de la computadora. En este tipo de disco se encuentra dentro de la carcasa una serie de platos metálicos apilados girando a gran velocidad. Sobre estos platos se sitúan los cabezales encargados de leer o escribir los impulsos magnéticos. Hay distintos estándares a la hora de comunicar un disco duro con la computadora. Existen distintos tipos de interfaces las más comunes son: Integrated Drive Electronics (IDE, también llamado ATA) , SCSI generalmente usado en servidores, SATA, este último estandarizado en el año 2004 y FC exclusivo para servidores.
Tal y como sale de fábrica, el disco duro no puede ser utilizado por un sistema operativo. Antes tenemos que definir en él un formato de bajo nivel, una o más particiones y luego hemos de darles un formato que pueda ser entendido por nuestro sistema.
También existe otro tipo de discos denominados de estado sólido que utilizan cierto tipo de memorias construidas con semiconductores para almacenar la información. El uso de esta clase de discos generalmente se limitaba a las supercomputadoras, por su elevado precio, aunque hoy en día ya se puede encontrar en el mercado unidades mucho más económicas de baja capacidad (hasta 64 GB) para el uso en computadoras personales (sobre todo portátiles). Así, el caché de pista es una memoria de estado sólido, tipo memoria RAM, dentro de un disco duro de estado sólido.
Cabezal de lectura/escritura
Dentro de un disco duro hay varios platos (entre 2 y 4), que son discos (de aluminio o cristal) concéntricos y que giran todos a la vez. El cabezal (dispositivo de lectura y escritura) es un conjunto de brazos alineados verticalmente que se mueven hacia dentro o fuera según convenga, todos a la vez. En la punta de dichos brazos están las cabezas de lectura/escritura, que gracias al movimiento del cabezal pueden leer tanto zonas interiores como exteriores del disco.
Cada plato tiene dos caras, y es necesaria una cabeza de lectura/escritura para cada cara (no es una cabeza por plato, sino una por cara). Si se mira el esquema Cilindro-Cabeza-Sector (más abajo), a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros) ó 3 millonésimas de milímetro. Si alguna llega a tocarlo, causaría muchos daños en el disco, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.500 revoluciones por minuto se mueve a 120 km/h en el borde).
DISQUETE
Un disco flexible o disquete (en lengua inglesa floppy disk o diskette) es un soporte de almacenamiento de datos formado por una pieza circular de material magnético, fina y flexible (de ahí su denominación) encerrada en una carcasa de plástico cuadrada o rectangular. Los disquetes se leen y se escriben mediante un dispositivo llamado disquetera (o FDD, del inglés Floppy Disk Drive). Es un disco más pequeño que el CD, tanto en tamaño externo como en capacidad, que está encerrado en una funda de pasta que lo protege (como se ha dicho anteriormente).
CINTA MAGNETICA
La cinta magnética es un tipo de soporte de almacenamiento de información que se graba en pistas sobre una banda de un material magnético, generalmente óxido de hierro o algún cromato. El tipo de información que se puede almacenar en las cintas magnéticas es variado, como vídeo, audio y datos.
Hay diferentes tipos de cintas, tanto en sus medidas físicas, como en su constitución química, así como diferentes formatos de grabación, especializados en el tipo de información que se quiere grabar.
Los dispositivos informáticos de almacenamiento masivo de datos de cinta magnética son utilizados principalmente para respaldo de archivos y para el proceso de información de tipo secuencial, como en la elaboración de nóminas de las grandes organizaciones públicas y privadas. Al almacén donde se guardan estos dispositivos se lo denomina cintoteca.
Su uso también se ha extendido para el almacenamiento analógico de música (como el casete de audio) y para vídeo, como las cintas de VHS (véase cinta de video).
La cinta magnética de audio dependiendo del equipo que la reproduce / graba recibe distintos nombres:
Se llama cinta de bobina abierta si es de magnetofóno.
Casete cuando es de formato compacto utilizada en pletina o walkman.
Cartucho cuando es utilizada por las cartucheras.
CD
El disco compacto (conocido popularmente como CD, por las siglas en inglés de Compact Disc) es un soporte digital óptico utilizado para almacenar cualquier tipo de información (audio, vídeo, documentos y otros datos). En español o castellano, se puede escribir «cedé», aunque en gran parte de Latinoamérica (no en España) se pronucia «sidí» (en inglés). La Real Academia Española también acepta «cederrón» [1] (CD-ROM).
DVD
El DVD, del inglés "Digital Versatile Disc"("Disco Versátil Digital") o "Digital Video Disc"("Disco de Video Digital") debido a su popular uso en películas, es un formato de almacenamiento óptico que puede ser usado para guardar datos, incluyendo películas con alta calidad de vídeo y audio. Se asemeja a los discos compactos en cuanto a sus dimensiones físicas (diámetro de 12 u 8 centímetros), pero están codificados en un formato distinto y a una densidad mucho mayor. A diferencia de los CD, todos los DVD deben guardar los datos utilizando un sistema de archivos denominado UDF (Universal Disk Format), el cual es una extensión del estándar ISO 9660, usado para CD de datos. El DVD Forum (un consorcio formado por todas las organizaciones que han participado en la elaboración del formato) se encarga de mantener al día sus especificaciones técnicas.
DISCO ZIP
El Iomega Zip (también llamado unidad Zip o disco Zip) es una unidad de almacenamiento masiva extraíble de media capacidad, lanzada por Iomega en 1994. La primera versión tenía una capacidad de 100 MB, pero versiones posteriores lo ampliaron a 250 y 750 MB.
Se convirtió en el más popular candidato a suceder al disquete de 3,5 pulgadas, seguido por el SuperDisk. Aunque nunca logró conseguirlo, sustituyó a la mayoría de medios extraíbles como los SyQuest y robó parte del terreno del Disco magneto-óptico al ser integrado de serie en varias configuraciones de portátiles y Apple Macintosh.
La caída de precios de grabadoras y consumibles CD-R y CD-RW y, sobre todo de los pendrives y las tarjetas flash (que sí han logrado sustituir al disquete), acabaron por sacarlo del mercado y del uso cotidiano.
En un intento de retener parte del mercado que perdía, Iomega comercializó bajo la marca Zip, una serie de regrabadoras de CD-ROM, conocidas como Zip-650 o Zip-CD.
MEMORIA FLASH
La memoria flash es una forma desarrollada de la memoria EEPROM que permite que múltiples posiciones de memoria sean escritas o borradas en una misma operación de programación mediante impulsos eléctricos, frente a las anteriores que sólo permite escribir o borrar una única celda cada vez. Por ello, flash permite funcionar a velocidades muy superiores cuando los sistemas emplean lectura y escritura en diferentes puntos de esta memoria al mismo tiempo.
LA MOTHERBOARD
La placa base, placa madre, tarjeta madre o board (en inglés motherboard, mainboard) es una tarjeta de circuito impreso a la que se conectan las demás partes de la computadora. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el procesador, la memoria RAM, los buses de expansión y otros dispositivos.
Va instalada dentro de una caja que por lo general está hecha de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
La placa base, además, incluye un software llamado BIOS, que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.
Contenido
[ocultar]
* 1 Componentes de la placa base
o 1.1 Tipos de Bus
* 2 Placa multi-procesador
* 3 Tipos
* 4 Formatos
* 5 Escalabilidad
* 6 Fabricantes
* 7 Ejercicios
* 8 Véase también
Componentes de la placa base [editar]
Diagrama de una placa base típica.
Una placa base típica admite los siguientes componentes:
* Uno o varios conectores de alimentación: por estos conectores, una alimentación eléctrica proporciona a la placa base los diferentes voltajes necesarios para su funcionamiento.
* El zócalo de CPU (a menudo llamado socket): es un receptáculo que recibe el micro-procesador y lo conecta con el resto de la microcomputadora.
* Los conectores de memoria RAM (ranura de memoria, en inglés memory slot), en número de 2, 3 o 4 en las placas base comunes, e incluso 6.
* El chipset: uno o más circuitos electrónicos, que gestiona las transferencias de datos entre los diferentes componentes de la computadora (microprocesador, memoria, disco duro, etc.).
* Un reloj: regula la velocidad de ejecución de las instrucciones del microprocesador y de los periféricos internos.
* La CMOS: una pequeña memoria que preserva cierta información importante (como la configuración del equipo, fecha y hora), mientras el equipo no está alimentado por electricidad.
* La pila de la CMOS: proporciona la electricidad necesaria para operar el circuito.
* La BIOS: un programa registrado en una memoria no volátil (antiguamente en memorias ROM, pero desde hace tiempo se emplean memorias flash). Este programa es específico de la tarjeta y se encarga de la interfaz de bajo nivel entre el microprocesador y algunos periféricos. Recupera, y después ejecuta, las instrucciones del MBR (Master Boot Record), registradas en un disco duro, cuando arranca el
* El bus (también llamado bus interno o en inglés (Front Side Bus (FSB)): conecta el microprocesador al chipset.
* El bus de memoria conecta el chipset a la memoria temporal.
* El bus de expansión (también llamado bus I/O): une el microprocesador a los conectores entrada/salida y a las ranuras de expansión.
* Los conectores de entrada/salida que cumplen normalmente con la norma PC 99: estos conectores incluyen:
o Los puertos serie, por ejemplo para conectar dispositivos antiguos.
o Los puertos paralelos, por ejemplo para la conexión de antiguas impresoras.
o Los puertos USB (en inglés Universal Serial Bus), por ejemplo para conectar periféricos recientes.
o Los conectores RJ45, para conectarse a una red informática.
o Los conectores VGA, para la conexión del monitor de la computadora.
o Los conectores IDE o Serial ATA I o II, para conectar dispositivos de almacenamiento, tales como discos duros y discos ópticos.
o Los conectores de audio, para conectar dispositivos de audio, tales como altavoces o micrófono.
* Los conectores (slots) de expansión: se trata de receptáculos que pueden acoger tarjetas de expansión (estas tarjetas se utilizan para agregar características o aumentar el rendimiento de un ordenador; por ejemplo, un tarjeta gráfica se puede añadir a un ordenador para mejorar el rendimiento 3D en el monitor). Estos puertos pueden ser puertos ISA (interfaz antigua), PCI (en inglés Peripheral Component Interconnect) y, los más recientes, PCI Express.
Con la evolución de las computadoras, más y más características se han integrado en la placa base, tales como circuitos electrónicos para la gestión del vídeo IGP (en inglés Integrated Graphic Processor), de sonido o de redes (10/100 Mbps/1 Gbps), evitando así la adición de tarjetas de expansión.
Tipos de Bus [editar]
Los buses son espacios físicos que permiten el transporte de información y energía entre dos puntos de la computadora. Los Buses Generales son los siguientes:
* Bus de datos: son las líneas de comunicación por donde circulan los datos externos e internos del microprocesador.
* Bus de dirección: línea de comunicación por donde viaja la información específica sobre la localización de la dirección de memoria del dato o dispositivo al que se hace referencia.
* Bus de control: línea de comunicación por donde se controla el intercambio de información con un módulo de la unidad central y los periféricos.
* Bus de expansión: conjunto de líneas de comunicación encargado de llevar el bus de datos, el bus de dirección y el de control a la tarjeta de interfaz (entrada, salida) que se agrega a la tarjeta principal.
* Bus del sistema: todos los componentes de la CPU se vinculan a través del bus de sistema, mediante distintos tipos de datos el microprocesador y la memoria principal, que también involucra a la memoria caché de nivel 2. La velocidad de tranferencia del bus de sistema está determinada por la frecuencia del bus y el ancho del mínimo.
Placa multi-procesador [editar]
Una placa con dos procesadores.
Este tipo de placa base puede acoger a varios procesadores (generalmente de 2, 4, 8 o más). Estas placas base multiprocesador tienen varios zócalos de micro-procesador (socket), lo que les permite conectar varios micro-procesadores físicamente distintos (a diferencia de los de procesador de doble núcleo).
Cuando hay dos procesadores en una placa base, hay dos formas de manejarlos:
* El modo asimétrico, donde a cada procesador se le asigna una tarea diferente. Este método no acelera el tratamiento, pero puede asignar una tarea a una CPU, mientras que la otra lleva a cabo a una tarea diferente.
* El modo simétrico, llamado PSM (en inglés Symmetric MultiProcessing), donde cada tarea se distribuye de forma simétrica entre los dos procesadores.
Linux fue el primer sistema operativo en gestionar la arquitectura de doble procesador en x86.[cita requerida] Sin embargo, la gestión de varios procesadores existía ya antes en otras plataformas y otros sistemas operativos. Linux 2.6.x maneja multiprocesadores simétricos, y las arquitecturas de memoria no uniformemente distribuida (NUMA).
Algunos fabricantes proveen placas base que pueden acoger hasta 8 procesadores (en el caso de socket 939 para procesadores AMD Opteron y sobre socket 604 para procesadores Intel Xeon).
Tipos [editar]
La mayoría de las placas de PC vendidas después de 2001 se pueden clasificar en dos grupos:
* Las placas base para procesadores AMD
o Slot A Duron, Athlon
o Socket A Duron, Athlon, Athlon XP, Sempron
o Socket 754 Athlon 64, Mobile Athlon 64, Sempron, Turion
o Socket 939 Athlon 64, Athlon FX , Athlon X2, Sempron, Opteron
o Socket 940 Opteron y Athlon 64 FX
o Socket AM2 Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
o Socket F Opteron
o Socket AM2 + Athlon 64, Athlon FX, Athlon X2, Sempron, Phenom
o Socket AM3 Phenom II X2/X3/X4.
* Las placas base para procesadores Intel
o Slot 1: Pentium 3, Celeron
o Socket 370: Pentium 3, Celeron
o Socket 423: Pentium 4, Celeron
o Socket 478: Pentium 4, Celeron
o Socket 775: Pentium 4, Celeron, Pentium D (doble núcleo), Core 2 Duo, Core 2 Quad
o Socket 603 Xeon
o Socket 604 Xeon
o Socket 771 Xeon
o LGA1366 Intel Core i7
Formatos [editar]
Motherboards form factors.svg
Las tarjetas madre necesitan tener dimensiones compatibles con las cajas que las contienen, de manera que desde los primeros computadores personales se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas, como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
Con los años, varias normas se fueron imponiendo:
* XT: es el formato de la placa base del PC de IBM modelo 5160, lanzado en 1983. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
* 1984 AT 305 × 305 mm ( IBM)
o Baby AT: 216 × 330 mm
* AT: uno de los formatos más grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
* 1995 ATX 305 × 244 mm (Intel)
o MicroATX: 244 × 244 mm
o FlexATX: 229 × 191 mm
o MiniATX: 284 × 208 mm
* ATX: creado por un grupo liderado por Intel, en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño.
* 2001 ITX 215 × 195 mm ( VIA)
o MiniITX: 170 × 170 mm
o NanoITX: 120 × 120 mm
o PicoITX: 100 × 72 mm
* ITX: con rasgos procedentes de las especificaciones microATX y FlexATX de Intel, el diseño de VIA se centra en la integración en placa base del mayor número posible de componentes, además de la inclusión del hardware gráfico en el propio chipset del equipo, siendo innecesaria la instalación de una tarjeta gráfica en la ranura AGP.
* 2005 BTX 325 × 267 mm (Intel)
o Micro bTX: 264 × 267 mm
o PicoBTX: 203 × 267 mm
o RegularBTX: 325 × 267 mm
* BTX: retirada en muy poco tiempo por la falta de aceptación, resultó prácticamente incompatible con ATX, salvo en la fuente de alimentación. Fue creada para intentar solventar los problemas de ruido y refrigeración, como evolución de la ATX.
* 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
* DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
* Formato propietario: durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes está Dell, que rara vez fabrica equipos diseñados con factores de forma de la industria.
Escalabilidad [editar]
Hasta la mitad de la década de 1990, los PC fueron equipados con una placa en la que se soldó el microprocesador (CPU). Luego vinieron las placas base equipadas con soporte de microprocesador (socket) «libre», que permitía acoger el microprocesador de elección (de acuerdo a sus necesidades y presupuesto). Con este sistema (que pronto se hizo más generalizado y no ha sido discutido), es teóricamente posible equipar el PC con una CPU más potente, sin sustituir la placa base, pero a menor costo.
De hecho, esta flexibilidad tiene sus límites porque los microprocesadores son cada vez más eficientes, e invariablemente requieren placas madre más eficaces (por ejemplo, capaces de manejar flujos de datos cada vez más importantes).
Fabricantes [editar]
Varios fabricantes se reparten el mercado de placas base, tales como Abit, Albatron, Aopen, ASUS, ASRock, Biostar , Chaintech,Dell, DFO, Elite, Epox, Foxconn, Gigabyte Technology, Intel, MSI, QDI, Sapphire Technology, Soltek, Super Micro, Tyan, Via , XFX, Pc Chips
Algunos diseñan y fabrican uno o más componentes de la placa base, mientras que otros ensamblan los componentes que terceros han diseñado y fabricado.
QUE ES UNA RANURA DE EXPANCION
El audio/módem rise, también conocido como slot AMR2 o AMR3 es una ranura de expansión en la placa madre para dispositivos de audio (como tarjetas de sonido) o modems lanzada en 1998 y presente en placas de Intel Pentium III, Intel Pentium IV y AMD Athlon. Fue diseñada por Intel como una interfaz con los diversos chipsets para proporcionar funcionalidad analógica de Entrada/Salida permitiendo que esos componentes fueran reutilizados en placas posterioreres sin tener que pasar por un nuevo proceso de certificación de la FCC (con los costes en tiempo y económicos que conlleva).
Cuenta con 2x23 pines divididos en dos bloques, uno de 11 (el más cercano al borde de la placa madre) y otro de 12, con lo que es físicamente imposible una inserción errónea, y suele aparecer en lugar de un slot PCI, aunque a diferencia de este no es plug and play y no admite tarjetas aceleradas por hardware (sólo por software)
En un principio se diseñó como ranura de expansión para dispositivos económicos de audio o comunicaciones ya que estos harían uso de los recursos de la máquina como el microprocesador y la memoria RAM. Esto tuvo poco éxito ya que fue lanzado en un momento en que la potencia de las máquinas no era la adecuada para soportar esta carga y el mal o escaso soporte de los drivers para estos dispositivos en sistemas operativos que no fuesen Windows.
Tecnológicamente ha sido superado por el Advanced Communications Riser (de VIA y AMD) y el Communications and Networking Riser de Intel. Pero en general todas las tecnologías en placas hijas (riser card) como ACR, AMR, y CNR, están hoy obsoletas en favor de los componentes embebidos y los dispositivos USB.
QUE ES UNA TARJETA DE EXPANCION
Las tarjetas de expansión son dispositivos con diversos circuitos integrados y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para ampliar la capacidad de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.
En la actualidad las tarjetas suelen ser de tipo PCI, PCI Express o AGP. Como ejemplo de tarjetas que ya no se utilizan tenemos la de tipo Bus ISA.
Gracias al avance en la tecnología USB y a la integración de audio/video en la placa base, hoy en día se emplean cada vez menos.
La historia de la tarjeta de expansión [editar]
El primer microordenador en ofrecer un bus de tarjeta tipo ranura fue el Altair 8800, desarrollado en 1974-1975. Inicialmente, las implementaciones de este bus eran de marca registrada (como Apple II y Macintosh), pero en 1982 fabricantes de computadoras basadas en el Intel 8080/Zilog Z80 que ejecutaban CP/M ya habían adoptado el estándar S-100. IBM lanzó el bus XT, con el primer IBM PC en 1981; se llamaba entonces el bus PC, ya que el IBM XT, que utilizaba el mismo bus (con una leve excepción) no se lanzó hasta 1983. XT (también denominado ISA de 8 bits) fue reemplazado por ISA (también denominado ISA de 16 bits), conocido originalmente como el bus AT, en 1984. El bus MCA de IBM, desarrollado para el PS/2 en 1987, competía con ISA, pero cayó en desgracia debido a la aceptación general de ISA de parte de la industria, y la licencia cerrada que IBM mantenía sobre MCA. EISA, la versión extendida de 32 bits abogada por Compaq, era común en las placas base de los PC hasta 1997, cuando Microsoft lo declaró un «subsistema heredado» en el libro blanco industrial PC 97. VESA Local Bus, un bus de expansión al principio de los 1990 que estaba ligado intrínsecamente a la CPU 80486, se volvió obsoleto (además del procesador) cuando Intel lanzó la CPU Pentium en 1993.
El bus PCI se lanzó en 1991 para reemplazar a ISA. El estándar (ahora en la versión 3.0) se encuentra en las placas base de los PC aun hoy en día. Intel lanzó el bus AGP en 1997 como una solución dedicada de aceleración de video. Aunque se denominaba un bus, AGP admite una sola tarjeta a la vez. A partir de 2005, PCI Express ha estado reemplazando a PCI y a AGP. Este estándar, aprobado en 2004, implementa el protocolo lógico PCI a través de una interfaz de comunicación en serie.
Después del bus S-100, este artículo sólo menciona buses empleados en PCs compatibles con IBM/Windows-Intel. La mayoría de las otras líneas de computadoras que no eran compatibles con IBM, inclusive las de Tandy, Commodore, Amiga y Atari, ofrecían sus propios buses de expansión. Aun muchas consolas de videojuegos, tales como el Sega Genesis, incluían buses de expansión; al menos en el caso del Genesis, el bus de expansión era de marca registrada, y de hecho las ranuras de cartucho de la muchas consolas que usaban cartuchos (excepto el Atari 2600) calificarían como buses de expansión, ya que exponían las capacidades de lectura y escritura del bus interno del sistema. No obstante, los módulos de expansión conectados a esos interfaces, aunque eran funcionalmente iguales a las tarjetas de expansión, no son técnicamente tarjetas de expansión, debido a su forma física.
Para sus modelos 1000 EX y 1000 HX, Tandy Computer diseñó la interfaz de expansión PLUS, una adaptación de las tarjetas del bus XT con un factor de forma más pequeño. Porque es eléctricamente compatible con el bus XT (también denominado ISA de 8 bits o XT-ISA), un adaptador pasivo puede utilizarse para conectar tarjetas XT a un conector de expansión PLUS. Otra característica de tarjetas PLUS es que se pueden apilar. Otro bus que ofrecía módulos de expansión capaces de ser apilados era el bus «sidecar» empleado por el IBM PCjr. Éste pudo haber sido eléctricamente igual o similar al bus XT; seguramente poseía algunas similitudes ya que ambos esencialmente exponían los buses de dirección y de datos de la CPU 8088, con búferes y preservación de estado, la adición de interrupciones y DMA proveídos por chips complementarios de Intel, y algunas líneas de detección de fallos (Corriente Buena, Comprobación de Memoria, Comprobación de Memoria E/S). Otra vez, PCjr sidecars no son técnicamente tarjetas de expansión, sino módulos de expansión, con la única diferencia siendo que el sidecar es una tarjeta de memoria envuelta en una caja de plástico (con agujeros que exponen los conectores).
CLASES DE MOTHERBOARD
Las tarjetas madre necesitan tener dimensiones compatibles con las cajas que las contienen, de manera que desde los primeros computadores personales se han establecido características mecánicas, llamadas factor de forma. Definen la distribución de diversos componentes y las dimensiones físicas, como por ejemplo el largo y ancho de la tarjeta, la posición de agujeros de sujeción y las características de los conectores.
Con los años, varias normas se fueron imponiendo:
* XT: es el formato de la placa base del PC de IBM modelo 5160, lanzado en 1983. En este factor de forma se definió un tamaño exactamente igual al de una hoja de papel tamaño carta y un único conector externo para el teclado.
* 1984 AT 305 × 305 mm ( IBM)
o Baby AT: 216 × 330 mm
* AT: uno de los formatos más grandes de toda la historia del PC (305 × 279–330 mm), definió un conector de potencia formado por dos partes. Fue usado de manera extensa de 1985 a 1995.
* 1995 ATX 305 × 244 mm (Intel)
o MicroATX: 244 × 244 mm
o FlexATX: 229 × 191 mm
o MiniATX: 284 × 208 mm
* ATX: creado por un grupo liderado por Intel, en 1995 introdujo las conexiones exteriores en la forma de un panel I/O y definió un conector de 20 pines para la energía. Se usa en la actualidad en la forma de algunas variantes, que incluyen conectores de energía extra o reducciones en el tamaño.
* 2001 ITX 215 × 195 mm ( VIA)
o MiniITX: 170 × 170 mm
o NanoITX: 120 × 120 mm
o PicoITX: 100 × 72 mm
* ITX: con rasgos procedentes de las especificaciones microATX y FlexATX de Intel, el diseño de VIA se centra en la integración en placa base del mayor número posible de componentes, además de la inclusión del hardware gráfico en el propio chipset del equipo, siendo innecesaria la instalación de una tarjeta gráfica en la ranura AGP.
* 2005 BTX 325 × 267 mm (Intel)
o Micro bTX: 264 × 267 mm
o PicoBTX: 203 × 267 mm
o RegularBTX: 325 × 267 mm
* BTX: retirada en muy poco tiempo por la falta de aceptación, resultó prácticamente incompatible con ATX, salvo en la fuente de alimentación. Fue creada para intentar solventar los problemas de ruido y refrigeración, como evolución de la ATX.
* 2007 DTX 248 × 203 mm ( AMD)
o Mini-DTX: 170 × 203 mm
o Full-DTX: 243 × 203 mm
* DTX: destinadas a PCs de pequeño formato. Hacen uso de un conector de energía de 24 pines y de un conector adicional de 2x2.
* Formato propietario: durante la existencia del PC, mucha marcas han intentado mantener un esquema cerrado de hardware, fabricando tarjetas madre incompatibles físicamente con los factores de forma con dimensiones, distribución de elementos o conectores que son atípicos. Entre las marcas mas persistentes está Dell, que rara vez fabrica equipos diseñados con factores de forma de la industria.
No hay comentarios:
Publicar un comentario